Performance Evaluation 3 (Question 7 – 9) – Physics Form 4 Chapter 3


Question 7:
Th e Earth orbits the Sun with radius of orbit of 1.50 ร— 1011 m and orbital period of 1 year. Radius of orbit of planet Saturn is 1.43 ร— 1012 m. What is the orbital period of Saturn?

Answer:
Orbital period of the Earth, ๐‘‡1=1.00 years,ย 
Orbital period of Satrn = ๐‘‡2
Orbital radius of the Earth, r1 = 1.50 ร— 1011 m,
Orbital radius of Saturn, r2 = 1.43 ร— 1012 m


$$ \begin{aligned} \frac{T_1^2}{T_2^2} & =\frac{r_1^3}{r_2^3} \\ \frac{1.00^2}{T^2} & =\frac{\left(1.50 \times 10^{11}\right)^3}{\left(1.43 \times 10^{12}\right)^3} \\ T_2^2 & =\frac{1.00^2 \times\left(1.43 \times 10^{12}\right)^3}{\left(1.50 \times 10^{11}\right)^3} \\ T_2 & =\sqrt{\frac{1.00^2 \times\left(1.43 \times 10^{12}\right)^3}{\left(1.50 \times 10^{11}\right)^3}} \\ & =29.44 \text { years } \end{aligned} $$

Question 8:
A spacecraft orbits the Earth at a height of 1 600 km. Calculate the escape velocity for the spacecraft.
[G = 6.67 ร— 10โ€“11 N m2 kgโ€“2, mass of the Earth = 5.97 ร— 1024 kg, radius of the Earth = 6.37 ร— 106 m]

Answer:
$$ \text { Escape velocity, } v=\sqrt{\frac{2 G M}{(R+h)}} $$
$$ \begin{aligned} & =\sqrt{\frac{2 \times\left(6.67 \times 10^{-11}\right) \times\left(5.97 \times 10^{24}\right)}{\left(6.37 \times 10^6+1600 \times 10^3\right)}} \\ & =9996 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

Question 9:
Figure 5 shows planet Saturn with rings made up of small particles around it. Planet Saturn has a mass of 5.68 ร— 1026 kg and radius of 6.03 ร— 107 m.


(a) Calculate the escape velocity of planet Saturn.

(b) Discuss the possibility of the small particles in the rings of planet Saturn escaping into the outer space.

Answer:
(a)
Escape velocity of Saturn,
$$ \begin{aligned} v & =\sqrt{\frac{2 G M}{R}} \\ & =\sqrt{\frac{2 \times\left(6.67 \times 10^{-11}\right) \times\left(5.68 \times 10^{26}\right)}{6.03 \times 10^7}} \\ & =3.54 \times 10^4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} $$

(b)
It is impossible for these small particles to escape because the escape velocity of the planet is very high.